

Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: L'60494

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Third Semester

Electrical and Electronics Engineering EE 2202/EE 34/10133 EE 303/080280017 – ELECTROMAGNETIC THEORY (Regulations 2008/2010)

(Common to PTEE 2202 – Electromagnetic Theory for B.E. (Part-Time) Second Semester – Electrical and Electronics Engineering – Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. How are the unit vectors defined in cylindrical coordinate systems?
- 2. State Stoke's theorem.
- 3. Determine the electric field intensity at any point between two infinite sheets of charge densities + \rho_8 C/m^2.
- 4. Distinguish between Dielectric constant and Dielectric strength.
- 5. Write the expression for the inductance per unit length of a long solenoid of N turns and having a length "l" mtr carrying a current of I amperes.
- 6. State: Ampere's circuital law.
- 7. What type of voltage is induced in a loop which is rotating about the y-axis in a magnetic field of flux density $\vec{B} = B_0 \sin \omega t \vec{i}$ Tesla?
- 8. Write the relation showing the energy required to establish a magnetic field by a quasi-stationary current system.
- 9. State the Poynting theorem.
- 10. Mention any two properties of uniform plane wave.

PART - B

 $(5\times16=80 \text{ Marks})$

11. a) i) Describe the classification of vector fields.

(6)

- ii) If $\vec{B} = y\vec{a}_x + (x + z)\vec{a}_y$ and a point Q is located at (-2, 6, 3), express
 - 1) the point Q in cylindrical and spherical coordinates,
 - 2) \vec{B} in spherical coordinates.

(10)

(OR)

- b) Determine the divergence and curl of the following vector fields: (4+4+8)
 - i) $\vec{P} = x^2 yz \vec{a}_x + xz \vec{a}_y$
 - ii) $\vec{Q} = \rho \sin \phi \vec{a}_{\rho} + \rho^2 z \vec{a}_{\phi} + z \cos \phi \vec{a}_{z}$
 - iii) $\vec{T} = \frac{1}{r^2} \cos \theta \vec{a}_r + r \sin \theta \cos \phi \vec{a}_\theta + \cos \theta \vec{a}_\phi$
- 12. a) Deduce an expression for the capacitance of a parallel plate capacitor having two dielectric media. (16)

(OR)

- b) i) State and device electric boundary conditions for a dielectric to dielectric medium and a conductor to dielectric medium. (10)
 - ii) Derive the expression for energy density in electrostatic fields. (6)
- 13. a) i) Derive both Biot-Savart's law and Ampere's law using the concept of magnetic vector potential. (10)
 - ii) Give the analogy between Electric and Magnetic circuits. (6)

(OR)

- b) i) Explain the classification and magnetization of magnetic materials. (6+4)
 - ii) Find the pull exerted on the plunger of an electromagnet, when the total flux uniformly distributed is 500 micro-weber and the diameter of the plunger is 2.54 cm. (6)
- 14. a) Derive Maxwell's equation from Faraday's law and Ampere's Law in integral form, differential form and vector form. (16)

(OR)

	b)	1) Compare field theory and circuit theory.	(8)
	i	ii) A conducting loop of radius 10 cm lies in the $z = 0$ plane. The associated	
		$H = 10\sin(120 \pi t)\overline{a}_2$ MWb/m ² . Calculate the voltage induced in the loop.	(5)
	ii	ii) State Faraday's law of electromagnetic induction.	(3)
15.	a)	i) Deduce the equation of the propagation of the plane electromagnetic waves in free space.	(8)
	i	ii) An air line has characteristic impedance of 70 Ω and phase constant of 3 radians/m at 100 MHz. Calculate the inductance/meter and the capacitance/meter of the line.	(8)
		(OR)	
	b)	i) Derive the Poynting theorem and give its significance.	(12)
	i	ii) Describe briefly about Reflection coefficient and Transmission coefficient.	(4)